Degrees of Unsaturation (DU):

1. The number of rings or pi bonds a given molecular formula can have. For a molecule with C carbons, H hydrogens, X halogens, and N nitrogens:

$$DU = C - \frac{1}{2}(H + X) + \frac{1}{2}(N) + 1$$

Consider a typical problem:

Compound X has molecular formula $C_{13}H_{19}N$. When hydrogenated using excess hydrogen, it gives a new compound, Z, with molecular formula $C_{13}H_{23}N$. How many pi bonds and how many rings does compound X have?

$$DU_X = 13 - \frac{1}{2}(19) + \frac{1}{2} + 1 = 5 \ [\text{rings + pi bonds}]$$

$$DU_Z = 13 - \frac{1}{2}(23) + \frac{1}{2} + 1 = 3 \ [\text{rings}]$$

$$(DU_X) - (DU_Z) = 5 \ [\text{rings + pi bonds}] - 3 \ [\text{rings}] = 2 \ [\text{pi bonds}]$$

So, the constitution of X includes 3 rings and 2 pi bonds.